منابع مشابه
Additive ρ-functional inequalities
In this paper, we solve the additive ρ-functional inequalities ‖f(x+ y)− f(x)− f(y)‖ ≤ ∥∥∥∥ρ(2f (x+ y 2 ) − f(x)− f(y) )∥∥∥∥ , (1) ∥∥∥∥2f (x+ y 2 ) − f(x)− f(y) ∥∥∥∥ ≤ ‖ρ (f(x+ y)− f(x)− f(y))‖ , (2) where ρ is a fixed non-Archimedean number with |ρ| < 1 or ρ is a fixed complex number with |ρ| < 1. Using the direct method, we prove the Hyers-Ulam stability of the additive ρ-functional inequalit...
متن کاملQuadratic $rho$-functional inequalities in $beta$-homogeneous normed spaces
In cite{p}, Park introduced the quadratic $rho$-functional inequalitiesbegin{eqnarray}label{E01}&& |f(x+y)+f(x-y)-2f(x)-2f(y)| \ && qquad le left|rholeft(2 fleft(frac{x+y}{2}right) + 2 fleft(frac{x-y}{2}right)- f(x) - f(y)right)right|, nonumberend{eqnarray}where $rho$ is a fixed complex number with $|rho|
متن کاملquadratic $rho$-functional inequalities in $beta$-homogeneous normed spaces
in cite{p}, park introduced the quadratic $rho$-functional inequalitiesbegin{eqnarray}&& |f(x+y)+f(x-y)-2f(x)-2f(y)| && qquad le left|rholeft(2 fleft(frac{x+y}{2}right) + 2 fleft(frac{x-y}{2}right)- f(x) - f(y)right)right|, nonumberend{eqnarray}where $rho$ is a fixed complex number with $|rho|andbegin{eqnarray}&& left|2 fleft(frac{x+y}{2}right) + 2 fleft(frac{x-y}{2}r...
متن کاملAdditive Ρ –functional Inequalities in Non–archimedean Normed Spaces
In this paper, we solve the additive ρ -functional inequalities ‖ f (x+ y)− f (x)− f (y)‖ ∥∥∥ρ ( 2 f ( x+ y 2 ) − f (x)− f (y) ∥∥∥ (0.1) and ∥∥∥2 f ( x+ y 2 ) − f (x)− f (y) ∥∥∥ ‖ρ ( f (x+ y)− f (x)− f (y))‖ , (0.2) where ρ is a fixed non-Archimedean number with |ρ| < 1 . Furthermore, we prove the Hyers-Ulam stability of the additive ρ -functional inequalities (0.1) and (0.2) in non-Archimedean...
متن کاملQuadratic $alpha$-functional equations
In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Pure and Applied Mathematics
سال: 2016
ISSN: 1226-0657
DOI: 10.7468/jksmeb.2016.23.2.145